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Abstract

In this report we propose a state space model of a direct methanol fuel cell. This dynamical model allows analysis and optimisation of the fue
cell in a control-theoretical framework, for instance to improve the overall dynamics of the fuel cell or to reject environmental disturbances.
The model is particularly well suited to synthesise controllers, which are necessary to ensure stable, robust and efficient operation of a fue
cell. To yield a state space model of the direct methanol fuel cell, a system of nonlinear partial differential equations is transformed into a
system of ordinary initial value problems by Laplace transforms, approximation in function spaces and the method of weighted residuals.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction behaviour. At the Institute of Chemical Process Engineering
at Clausthal Technical University, Germany, a dynamical
As aresult of the increasing usage of accumulators, explor-model for a DMFC has been set up. This model describes
ing alternatives to conventional batteries is becoming more methanol, oxygen, carbon dioxide, temperature, ionic and
and more interesting. A promising possibility is the concept electrical potential in the fuel cell and allows dynamical
of fuel cells. Fuel cells are expected to reach higher degreessimulations with variable temperature for one- and two-
of efficiency because of the direct conversion of chemical dimensional problem§r] by means of partial differential
energy into electrical energy. Furthermore, they produce equations (PDEs). Based on these PDEs, a finite element
little noise and do not need large down times caused by model (FEM) has been developed to analyse and optimise
charging. a particular DMFC operated at the same institute. As a
The direct methanol fuel cell (DMFC) is especially result, it is possible to simulate the reaction of the fuel cell
promising for mobile applications with strongly limited to certain changing conditions, particularly to the anodic
space and weight. Compared to other fuel cells, it has aconcentration of methanol and to the overall voltage.
simple system design which leads to little required space. In order to optimise the DMFC it is necessary to improve
Currently, some applications in laptops, sailing boats etc. its dynamics. Control theory is the approved framework to
have already been reported. Yet the existing DMFCs are notdeal with the dynamics of self-acting, aimed manipulation
competitive with respect to cost/performance ratio. In order of the inputs to achieve a desired output. Control theory also
to optimise existing cells it is important to analyse and, if provides heaps of standard procedures to design a controller
necessary, to control its dynamical behaviour, BL.@]. for a certain input/output behaviour. Nevertheless, it is nec-
While general models of a DMFC have already been essary to transform the partial differential equations of the
formulated, many of them solely describe the steady statemathematical model into an equivalent standard form, the
state space model, which is a system of first-order ordinary
" Corresponding author. differential equations. One approach of this transformation
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- Catalytic Converter Layer The model of the MEA uses liquid and gas phases, both
Diffusion Layer Y Diffusion Layer ; reacting independently, whereas the void ratio is supposed
i to be uniform at the whole MEA. To simplify matters, these

equations are confined to reduction of oxygen and oxidation
Fig. 1. Subdivision of the MEA into five regions. of methanol while neglecting intermediate reactions. Instead,

the global kinetics of the ideal equation of reaction is used.

T

1 e = 4
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2. Dynamical model of the DMFC
In this article the dynamical behaviour of the DMFC is 2.1. Differential equations
characterised by functions of plagand timer for methanol,
oxygen, carbon dioxide and electrical and ionic potential.
Temperature changes and water flow will be neglected, since

According to the diffusion law by Fick, the concentration
of methanokeis described in all regions by diffusion equa-

they show but little influence on the dynamics of the DMFC tions:
(seef7]). 2

The model of the dynamical behaviour of the DMFC Me(h3) _ k2 CMegt’ D, fue(t, 2) (1)
is restricted to its main part, the membrane electrode o dz

assembly (MEA). Generally, the MEA can be divided into

five regions, namely two catalytic converter layers, where
the oxidisation and the reduction takes place, two diffusion
layers, which feed the catalytic converter layers with oxygen
and methanol, and a membrane. They are showfignl

The partition into five layers is caused by several physical
parameters due to different materials. The modelling of a

DMFC is restricted to one spatial dimension. The approach b by diffusi tion (the whole fall of
may well be extended to a two-dimensional model, yet the membrane by diffusion, convection (the whole fall of pres-

error of a one-dimensional model is less than 10% (Seesure difference takes place in the membrane) and migration
3]) of the protons (molecules of methanol are dragged through

the membrane), and thus may interchange between anodic
and cathodic layers. These additional effects are reflected by
three terms iry,,,.in the region/z. The oxidation of methanol
takes place in the catalytic converter lay&randi,. Hence,

the right-hand side of Edq1) is given by

fort € (0, T]andT € R. The constantk;for any index here
and in all following equations are placeholders for physical
parameters of the DMFC. They may vary between different
layers. A complete account of equations and constants can
be found in[7].

Inevitably, no known membrane inhibits methanol
crossover completely. Hence, methanol passes through the

Based on conservation laws, Rosenf{fidlobtained a set
of PDEs for the quantities concentration of methangl, of
oxygenco,and of carbon dioxideco,as well as partial pres-
sure of oxygerpo,and carbon dioxidgco,. Additionally,

0 <zel
ko expks(wa — ¢m — ka))cme <=zelp
fve = a%CMe (klgagiz + kzoacaczOZ + kﬂﬁn) <zels @)
ks expka(ek — ¢m — ka))eme “zely
0 <=z € Is.

Inside the membrane oxygen and carbon dioxide are de-
scribed by concentrationsy,and cco,. The PDEs forz €

the model includes boundary value problems of the electrical fzare similar to Eq.(1) with fo, = fco, = 0. Outside
potentialspzandgias well as of the ionic potentigk,. The the membrane both gases are described by partial pres-
spatial domains of the differential equations are the regions sures po,and pco,. Their dynamics is represented with
shown inFig. L Their physical dimensions for the MEA be- ¢ € (0, T]landz € I1 U I> U I4 U Isby four nonlinear PDEs:
longing to the DMFC described {7] are

9po,conlt,z) 0 dpo, Ipc
I1 = (z1,22) = (0,520 w m), % = 3.V | Po2: peos. azz’ azoz
I2 = (22, z3) = (520,550 . m), + fop.copts 2). 3)

I3 = (z3, z4) = (550, 760 . M),

The nonlinear transport tertvi(po,, pco,, 9po,/9z, dpco,/
Iy = =(7 1 ; - 2 2
4= (z4,25) = (760,810 p m), dz)in Eq. (3) describes the transport of oxygen and carbon

Is = (zs5, z6) = (810, 1330 . m). dioxide outside the membrane by a Binary—Friction-model.
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The nonlinear termgo,and fco,are given by are necessary for every PDE depending on tiineeach re-
gion. Additionally, every time-independent PDE needs two

0 zeh spatial boundary conditions for each region.
) kooexpks(pa— ¢m — ko)) po, z€ I 4 The initial values for the PDEs in Secti@nl can be cho-
fo. = kazexpks(gk — ¢m — ko)) po, z € Iy @ sen arbitrarily. For instanceo, (0, z)andpco, (0, z)as initial
0 zels values for Eq(3) reflect merely partial pressuressat 0.
They are determined by certain environmental conditions.
and The boundary conditions may be separated into two
0 el groups. The boundary values of the MEAzat z1 =0 p
mandz = zg = 1330 . mare determined again by some en-
feo, = k2aexpks(pa — ¢m — ka)lewe 2 € I2 ) vironmental conditions and may be chosen arbitrarily. In
kasexpks(gk — ¢om — ka))eme  z € I contrast, the inner conditions at the layer contacts at
0 7z € Is, 72, ..., zshave to reflect the physical properties of the MEA.

In general, any solution of the PDEs must be continuous on
the entire MEA. Hence, the inner boundary conditions are
equalities between left-hand and right-hand sides gin

which represent idoand Isthe reduction of oxygen and the
synthesis of carbon dioxide by oxidation of methanol, respec-

tively. _ o _ _ , Eq. (3) for instance, the inner boundary conditions read:
The electrical and ionic potentiajgan be described sim-
ilarly to cyve. Yet the dynamics ofis much faster than the  po,.I(t. zi) = po,r(t.zi), i=2,...,5 (12)

changes ofye. The dynamics of the potentials may therefore for ¢t € (O, T]. Here as well as in the entire sequel, the index

be neglected, so that their behaviour is described solely by ) S -
boundary value problems. Thus, the potentaise described Ir:gi;k\s,atmz I:iﬁ.hand value atand raccordinglly the right

by time-independent PDEs:

8290a(Z)
972

po,.i(t, zi) = lim po,(t, z; — ) and
e—0

0=kie + foa(2), z € UIb, (6)

po,r(t, zi) = lim po,(t,zi +¢), i=1...,5
e—0

2
%m(2) + fom(@), z€DhUIUI4 and (7) Additionally, the right-hand sides of the PDEs of Section

0=ki7
922 2.1describing the material flow must be at least continuous.
() Therefore, additional inner boundary conditions are given by,
0= le? + fou @), z€lLUIs. (8) here exemplarily in case of E(B):
The nonlinear terms:
=1 en ©
727 ke expka(pa — ¢m — ka))eme + k7 explks(pa — ¢m — ko)) po, z € I,

kioexpka(pa — ¢m — ka))cme + ki1 explg(pa — ¢m — ko)) po, quadz € I
fom=140 quadz € I3 (10)

k12 expks(gx — ¢m — ka))cme + k1zexplks(gk — ¢m — ko)) po,quadz € Iy,

kiaexpks(gx — ¢m — ka))cme + kisexplks(gx — ¢m — ko)) po, z € Ia
f‘/’k = (11)

0 z€ Iy

reflect the potentials which depend afeand po,.

All'in all, the dynamic model of the DMFC is given by
three time-dependent PDEs for each regign.. ., Is, a sin- N =N, at z=1zp,...,25.
gle time-independent PDE for each of the regiéns/zand
Isand two time-independent PDEs for each of the regions Generally, withy being a placeholder for concentrations and
Iandly. Ten of the time-dependent PDESs are nonlinear. Un- partial pressures, the set of conditions can be summarised as
fortunately, each quantity has a nonlinear right-hand Siide

at least on region. Bey(t,z) = ye(t) and Biy(r. ziv1) = n(0) (13)
with operatorsBjand B,for each differential equation and
2.2. Boundary and initial conditions i=1,...,5. The time-independent PDEs describing the

electrical and ionic potentials have inner boundary conditions
To characterise the dynamic behaviour of the DMFC com- similar to Eq.(13), except that they are time-independent,
pletely, two initial conditions and two boundary conditions too.
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3. State space representation of the DMFC regionl;, i =1,...,5. A description similar td15) can be
stated for all time-dependent PDEs introduced in Se@itn

The dynamics of the DMFC is represented by 15 nonlinear A precondition for applying the Laplace transform to a
and 7 linear partial differential equations of degree two. This PDE is, that neither mixed partial derivative occurs. For most
model of the DMFC is not well suited in a control-theoretical physical systems this precondition is satisfied. Here too, all
sense, i.e. to analyse the cells dynamic behaviour and to synPDEs introduced in Sectidhlinclude either spatial or tem-
thesise a proper controller. Therefore, these differential equa-poral partial derivatives, but not mixed ones.
tions will be transformed into an equivalent mathematical for-
mulation, the state space representation. A state space model ) ) )
allows detailed analysis of the cells temporal and spatial be- -2 Method of weighted residuals and collocation
haviour, optimisation of physical parameters of the cell and
is well suited for synthesis of a controller to, e.g. stabilise the
cells voltage or reject environmental disturbances. Besides,
there are powerful tools for simulation, analysis, synthesis
and optimisation of the dynamic behaviour of a state space
model.

The transformation of the differential equations devel- N N
oped in Section?.1 and 2.4nto a state space model, i.e.a 3 — . ) 7 — V. .
set of linear ordinary first-order differential equations will be ¥ 2) Z Y} or ¥is2) Z RS
carried out in several steps. Laplace transforms are applied
to eliminate partial time derivatives. The result is a set of
ordinary differential equations either of plager of both
frequencys and place;. Afterwards, the dependency upon ; .
plaqcez is elimin:fted by the method of weir;hted residSaIs, boundary value problems iz, zJandY (s, z)is replaced by

; L : Iculation of the coefficients;{(z)and Y(s), respectively.
that is by approximating the spatial dependency as accuratelyca . ; . J J o
as required. Finally, the nonlinearities of the differential The basis functions;(z)in Eq. (17) can be arbitrarily

equations are treated to yield a numerically convincing yet chc'):sen, thdey”rnertek:y rE)elald:éo t();“geaﬂy mdelpendgnlt. h
linear approximation of the dynamics of the DMFC, which or modetiing the ; ~NEDYSNEV polynomiais nave

is the state space model, i.e. a system of ordinary linear been US_Ed as bgsisfu_nctio;b}fﬁz).They are an orthogonal s_et
second-order initial value problerfs] of functions, which will play a major role later (see Section

3.3). Furthermore, approximations based on Chebyshev poly-
nomials converge rather fast, hence only few basis functions
are necessary amdremains small. Not at least, calculations
based on simple polynomials are computationally céhp
The main advantage of the method of weighted residuals is
o . .
Y(s,2) = Ly(t, 7) = / y(t, )" d, (14) asmall numberpf baS|sfunct|oNs:ompared to sevgral other
=0 approaches. This leads to a comparatively small dimension of
the resulting system of linear equations. Moreover, the solu-
tion is approximated not only at certain discretisation points.
The coefficienty ;(r)represeni(z, z)at every point in the re-

One of several possibilities to transform partial differen-
tial equations or boundary value problems is the method of
weighted residualgl]. The fundamental idea of this method

is the approximation of the exact solutionby a linear
combination:

j=1 j=1
17)

of N e Nbasis functions¢;(z). Thus, solving PDEs or

3.1. Laplace Transform

With the Laplace transform:

linear partial differential equations may be transformed into
a boundary value problem:

DY(s,z) = Uy (s,2), z€li =z zi+1) CR, gion I;, likewise for Laplace transformed quantities. Thus,
i=1....5 (15) interpolation is avoided when evaluating, z)or Y (s, z)at
somez € I;,i =1, ..., 5, whichis particularly important for
with D being a linear operator, which depends on the complex system analysis.
frequency paramete sed4]). Capital letters denote the cor- The coefficientsy;(r)and Y ;(s)have to be calculated re-

responding time-dependent lowercase Iettersinthefrequenc;spectingAtwo constraints. Namely, the approximating func-
domain, a notation which is adopted in the entire sequel. Ap- tion yor Yresp. has to satisfy the boundary value problem

plying the Laplace transforr(iL4) to, for instance, Eq(l), (15) as well as the corresponding boundary conditigir®).
the partial differential equation inve(z, z)can be written as The coefficients y;(r)of Eq. (15) are calculated
an ordinary boundary value problemdiye(s, z)and reads: by minimisation of the approximation errory =
92 Curels. ) Dy(t, z) — Dy(t, z)and Ry = DY (s, z) — DY (s, z)resp., i.e.
sCme(s, 2) — lez’ = L fme(t, 2) + eme(0, 2). the weighted residuals:
(16)

Zitl
rkz/ Rywi()dz, k=1,....N—2, i=1,...5

The right-hand side of Eq16)is the equivalent ot/;,in Eq. %

(15). Uj;,contains all possibilities to exert influence within the (18)
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should vanish. With a set ofV — 2weighting functions Eqg. (19) resp. (20) together with Eq. (21) resp.
wi(z), (18)is a system ofV — 2equations to determine the (22) completely characterise the approximatie(x)resp.
N coefficientsy;(r)or Y;(s). Two equations are yet required Y (s, z)according to Eq(17) of the solution of the DMFCs
to uniquely solve(18). They are given by the boundary model introduced in Sectia.1

conditions (see Eg$21) and (22pelow).

The weighting functionswi(z)can be arbitrarily cho- 3.3 Linear state space model of the DMFC
sen, they only need to be linearly independent. The sim-

plest choice is the Dirac impulse at some paig, which For all seven time-independent boundary value problems
is called collocation, pseudospectral or method of selectedye recall Eq(19) and define the quantities:
points, wi(z) = 8(z, zepr)for k=1,..., N —2. Now the o
weighted residual§18) reduce tory = Ry(s, zcpk)Or 1 = y=(;) e R, i=()eR™ and
Ry(t, zepi)fork=1,..., N - 2. V = (1) € RNV
For boundary value problems without time-dependency — ki )
follows: On the other hand, for each of the three frequency-depending
boundary value problems, we define according to(2Q):

N
Z”M =unlepn). k=L N=2 (9 Fo G e RN, 0= (0i) e R and

=t =k =ilk
. V= (Ukj) c RSNXSN’ W = (wij) c RSNXSN.
For s-depending boundary value problems the method of
weighted residuals fok =1,..., N — 2results in linear Now, time-independent boundary value proble(h8) can
equation systems depending.on simply be written as a linear matrix equation:
Vy=i. (23)

N
Z Yj(s) | ks &(zepi) + Dzgj(zepk) | = Ui (s, zepi) - Similarly, frequency-depending boundary value problems
7=t —uy; —ui; —0(5) (20) now simply read:

(20) (ksW + V)Y (s) = U(s). (24)

Here, the operatdp is replaced by a place-depending, time-  gqs (23) and (24pre alinear state space model of the DMFC.
invariant operatoD.and a time-variant operator. Since all - vet, for efficient analysis, optimisation and synthesis of the
PDEs of the DMFC are of degree one for the derivation with gynamical system further transformations are necessary to
respect to time, the time-variant operator can be written asjield a simple input/output relation.
ksandk(d/ar), respectively. The rows ofV, Eq.(23), are created either by the method
With yor Yresp. satisfying the boundary value problem ot \yeighted residuals (in total K — 2)rows) or by boundary
(15), they still have to fulfill the corresponding boundary  congitions (7x 2rows). The latter ones are pairwise linearly
conditions(13). _Accordmg to Sectio.2, all inner a_nd outer  independent, if only the boundary conditions gandzgare
boundary conditions at= z1, ..., zecanbewritteninastan-  of pirichlet type. This applies to the DMFC as can be seen
dardised form with operators. They shall be transformed sim- ;, Eq.(21). The 7(v — 2)rows ofV created by the method of
ilarly to Eq. (19) in case of a boundary value problem and \ejghted residuals are pairwise linearly independent, if the

Eq. (20)for a partial differential equation. set of basis functiong;(z), j =1, ..., N(see Eq(17)), is
Applying Eq.(17)to Eq.(13)yields: orthogonal. Since both sets of rows are necessarily linearly
N N independent, the matrixis regular for orthogonal basis func-
B ) yioj(z)=y and B> yj¢(zit1) =y, tions.
r; T ' ; RS With a regular matri¥/, Eq.(23) reads:
i=1...,5 @D s_ 1

for time-independent boundary value problems and
with ybeing the unique solution for the corresponding time-
No_ independent boundary value problems.
By Z Yj(s)¢;(zi) = Yi(s) and Frequency-depending boundary value problems cannot be

=1 transformed similarly, since the left-hand side of E2¢4)
N depends on the frequency parametétough, Eq(24) may
B> Yi(s)¢j(zit) = Ni(s). i=1,....5 (22) be further transformed to
=1

_ 1 — A
Y(s) = =W i(-vy U 25
for frequency-depending boundary value problems. sY(s) k ( () +U() (25)
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ferred in this contexf2], since it is computationally much
cheaper and numerically more stable.

Yet there is another possibility to yield a state space model
in a control-theoretical framework. Accepting a slight change
in the notion of states, the nonlinearities in partial differen-
V|- tial equations similar to Eq1) or (3) may be considered as
time-depending variation of the states, i.e. as auxiliary inputs
Fig. 2. Block diagram of the state space model of linear partial differential ua(t, 2). Applylng Laplace transform and_ colloqatlon, they
equations. shall readUs(s) = Lua(t, zcpr)at collocation pointseepk,

k=1,...,N—2. Of course, no external influence on the
if only W is regular. For general boundary conditions, and DMFC can be exerted with these auxiliary inputs. Instead,
boundary conditions of the DMFCs model, too, the regular- all additional inputs are already determined by the partial
ity of W cannot be guaranteed. Nevertheless, the boundarydifferential equations.
conditions of the DMFC may be transformed to a differential With these auxiliary inputs, Eq25) will be extended to
equation, if they are differentiated in time, and thus create a 1
regular matrixw. sY(s) = fw—l( VY(s) + U(s) + Uals)). (28)

Reverse Laplace transform of E85)yields a linear state
space model of time-dependent boundary value problems: Thematricey/, Wandthe inputtermzare the same as(@5).

1 The inputsUs(s)are completely determined by the PDEs.
o) = =W H=vy@) + a(), te(0,T). (26) Consequently, their dependency upon time or frequency resp.

k can be rewritten as time-variant dependency upon the states
Altogether, the dynamical behaviour ofthe DMFCis captured of the state space model of the DMFC. As an example, the

a

<

\J

1
ks

by a state space modg6) with concentration of methanojlse(see Eq(1)), shall be consid-
1 ered in the anodic catalytic converter layg(seeFig. 1in
system matrix : A = —%W‘lv and Section2). Thereuz(r)reduces to a terriy(r) ydepending on
timet. The entries oV,(r)are given by
input matrix : B = Ly, (27)
k (Va)k.j = ka2 explks(palzepk) — em(zepr) — ka))@j(zcp.)

Fig. 2 shows the corresponding block diagram for E26). _ .
The input vectonis given by 5(v — 2)values:;(¢)includedin for k=1,...,N—2and j=1,...,N. The entries still

U(s, z)at collocation pointgcp x(see Eq(15)). The remain- missing, i. e. the remaining two rows ®f(¢), are determined
ing 5 x 2values are the boundary conditions, i.e. the deriva- by the corresponding boundary conditions (see Se&ign
tive of the right-hand sides of E¢13). The output vector Similarly to Eq.(25), the reverse Laplace transform of
y(r)consists of coefficients;{r), which in fact represent the ~ Eq. (28) yields a linear state space model of the nonlinear
solution of the partial differential equation. boundary value problems:

3.4. Linear time-variant state space model of the DMFC ) = %W_l(— Vy(e) + Va()y(t) +a(t)), te(0,T].

The results of SectioB.3do not yet incorporate any non- (29)

linearity of the partial differential equations introduced in  The dynamical behaviour of the DMFC represented by a state
Section2.1 To yield a linear state space model for analysis, space mode{29) has an input matrix similar to Eq27).
optimisation and control of the DMFC, all nonlinear terms The system matrix is divided into a time_independent part
must be eliminated. Of course, any kind of linearisation of w-1yand atime-depending pat—1va(r), i.e.
the differential equations is straightforward. But a priori no
guaranteed error bounds can be stated explicitely. To reducesystem matrix A = ( WV + W lva(r)) and
the linearisation errors and particularly keep the solution in 1 (30)
tight error bounds, linear approximations of the nonlinear jnput matrix B = -w~1.
terms are calculated iteratively. k

Here again, the method of weighted residuals is proposed. The corresponding block diagram for E7)in conjunc-
Two possibilities are at hand. The first one is a classical New- tion with Eq.(28) can be seen ifig. 3.
ton iteration, in which the nonlinear problem is discretised
with the method of weighted residuals. The resulting nonlin-
ear matrix equation can be solved iteratively by linearisation 4. Results and discussion
(see e.g[9]). The second possibility is to linearise about a
function and discretise the linear problem afterwards. The The state space model of the entire DMFC is a compo-
second variant is the Newton—Kantorovich method. It is pre- sition of system and input matrices. Each partial differential
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i ; 1 J 0.6 + DMFC, measured ||
ks : - - - FEM model
—— state space model

\

b
w

0.5}

0.4}

A

0.3}

Voltage [V]

0.2}

Va(t)

A

0.1}

Fig. 3. Block diagram of the state space model of nonlinear partial differ-
ential equations. 0

0 500 1000 1500 2000
Current Density [Am'2]

equation provides a state space mod_el according t(PEgjor Fig. 4. current density—voltage characteristic; applied boundary conditions
(29)resp. Consequently, the block diagram of the state Spaceyre ., (1) = 1 bar, peo, (z5) = 0bar, po,(z1) = 0 bar, po, (z6) = 1 bar
model of the DMFC is composed of several block diagrams andcye(z1) = 750 mol nm3, cve(zs) = 0 mol mi—3.
shown inFigs. 2 and 3

To validate the approach of modelling the DMFC in a
control-theoretical framework, the state space model has beerfesembles the FEM model. Which of both models reflects
simulated for several environmental conditions, i.e. bound- the cells dynamics more precisely cannot be evaluated, since
ary and initial values. The results have been compared with 0 measuring data are available for pure steps of methanol
simulation results of the FEM model of the PDEs developed concentration.

by Rosentha]7]. Additionally, measuring data of the DMFC Yet the main advantage of the state space model cannot
described by Rosenthal have been taken into account if avail-P€ shown in figures. Primarily, the state space model as a
able. standard approach of control theory allows the analysis and

An important and widely used quality of a fuel cell is its optimisation of the cells dynamics. For instance, improving
current density—voltage characteristic. It has been simulatedthe behaviour of the cell in case of rapidly varying electri-
and compared for various environmental conditions. Exam- cal load will be part of future work. The behaviour of the
plarily, a state space simulation, a FEM simulation and mea- cell may also be improved by a closed loop controller, e.g. to
suring data for a single set of boundary conditions, which stabilise the cells voltage by adaptation of methanol concen-
are specified in the caption, are presente#ii 4 As can tration. Again, a state space modelis the preferred description
be seen, the state space model closely resembles the FEM controller synthesis is based upon.
model. Even though in the state space model the temperature Another advantage of the state space model is the
is fixed, the differences between the FEM model and the statePossibility of choosing the boundary values freely. The FEM
space model are negligible. The errors between the modelsnodel proposed by Rosenttjd] is restricted to certain com-
and the original data are caused be the simplifications listedbPinations of boundary values due to its inner structure. The
in Section2.

The current density—voltage-characteristic plots the cells
voltage against the steady state working point of the current FEMmodel _ .o ccooono
density for constant boundary values and physical param-
eters. It allows the analysis of effects certain parameters
show upon the performance of the DMFC when operated
stationarily. Subsequently, environmental conditions as well
as physical parameters can be altered to optimise particular
properties of the cell.

Yet the state space model is particularly well suited for
dynamical simulations. The step response is a standard
method to analyse the systems dynamical behaviour. An
example is shown irFig. 5 The methanol concentration
cmel(z1)at the anodic outer boundary (solid step function) is 0 20 40 60 80 100 12
stepwise altered at time= Oand 60s. The plot shows the Time [sec]
reaction of the state space model (solid line) and the reactionFig. 5. Reaction of the cell to an anodic step of methanol concentration with
of the FEM model (dashed line) on this varying environ- poundary conditiongco, (t, z1) = 1 bar, pco,(t. z6) = Obar, po, (t. z1) =
mental condition. Here again, the state space model closelyobar,po,(t, z6) = 1 bar,cvel(t, z6) = 0 mol 3 andgy(t, z6) = O V.
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inverse current density—voltage characteristic, for instance, References
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